Part Number Hot Search : 
24LC01 00080 T138LB 5SB40 620AA048 MAX267 USDB1 J120CA
Product Description
Full Text Search
 

To Download OP29003 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 a
Precision, Low Power, Micropower Dual Operational Amplifier OP290
PIN CONNECTIONS PDIP (P-Suffix)
OUT A -IN A +IN A V-
1 2 3 4 8
FEATURES Single-/Dual-Supply Operation, 1.6 V to 36 V, 0.8 V to 18 V True Single-Supply Operation; Input and Output Voltage Ranges Include Ground Low Supply Current (Per Amplifier), 20 A Max High Output Drive, 5 mA Min Low Input Offset Voltage, 200 V Max High Open-Loop Gain, 700 V/mV Min Outstanding PSRR, 5.6 V/V Max Industry Standard 8-Lead Dual Pinout Available in Die Form GENERAL DESCRIPTION
V+ OUT B -IN B +IN B
A
B
7 6
OP290
5
The OP290 is a high performance micropower dual op amp that operates from a single supply of 1.6 V to 36 V or from dual supplies of 0.8 V to 18 V. Input voltage range includes the negative rail allowing the OP290 to accommodate input signals down to ground in single-supply operation. The OP290's output swing also includes ground when operating from a single supply, enabling "zero-in, zero-out" operation. The OP290 draws less than 20 A of quiescent supply current per amplifier, while able to deliver over 5 mA of output current to a load. Input offset voltage is below 200 V eliminating the need for external nulling. Gain exceeds 700,000 and common-mode rejection is better than 100 dB. The power supply rejection ratio of under 5.6 V/V minimizes offset voltage changes experienced in battery-powered systems. The low offset voltage and high gain offered by the OP290 bring precision performance to micropower applications. The minimal voltage and current requirements of the OP290 suit it for battery- and solar-powered applications, such as portable instruments, remote sensors, and satellites. For a single op amp, see the OP90; for a quad, see the OP490.
V+
+IN -IN
OUTPUT
NULL
NULL
V
ELECTRONICALLY ADJUSTED ON CHIP FOR MINIMUM OFFSET VOLTAGE
Figure 1. Simplified Schematic (one of two amplifiers is shown)
REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 (c) 2003 Analog Devices, Inc. All rights reserved.
OP290-SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
Parameter INPUT OFFSET VOLTAGE INPUT OFFSET CURRENT INPUT BIAS CURRENT LARGE-SIGNAL VOLTAGE GAIN Symbol VOS IOS IB AVO VCM = 0 V VCM = 0 V VS = 15 V, VO = 10 V RL = 100 k RL = 10 k RL = 2 k V+ = 5 V, V- = 0 V, 1 V < VO < 4 V RL = 100 k RL = 10 k V+ = 5 V, V- = 0 V V S = 5 V1 VS = 5 V RL = 10 k RL = 2 k V+ = 5 V, V- = 0 V RL = 10k V+ = 5 V, V- = 0 V 0 V < VCM < 4 V VS = 15 V, -15 V < VCM < +13.5 V 400 200 100 100 70 0/4 -15/13.5 13.5 10.5 4.0 10 80 90 14.2 11.5 4.2 50 100 120 3.2 VS = 1.5 V VS = 15 V AV = +1 No Oscillations enp-p RIN RINCM SR GBWP CS fO = 0.1 Hz to 10 Hz VS = 15 V VS = 15 V VS = 15 V AV = +1 VS = 15 V Vs = +15 V VS = 15 V fO = 10 Hz VO = 20 V p-p VS = 15 V2 120 5 19 25 650 3 30 20 12 20 150 10 30 40
(@ VS =
1.5 V to
15 V, TA = 25 C, unless otherwise noted.)
Min OP290G Typ Max 125 0.1 4.0 600 400 200 250 140 500 5 25 Unit V nA nA V/mV V/mV V/mV V/mV V/mV V V V V V V dB dB V/V A A pF V p-p M G V/ms kHz dB
Conditions
INPUT VOLTAGE RANGE1 OUTPUT VOLTAGE SWING
IVR VO VOH, VOL
COMMON-MODE REJECTION
CMR
POWER SUPPLY REJECTION RATIO SUPPLY CURRENT (All Amplifiers) CAPACITIVE LOAD STABILITY INPUT NOISE VOLTAGE1 INPUT RESISTANCE DIFFERENTIAL-MODE INPUT RESISTANCE COMMON-MODE SLEW RATE GAIN BANDWIDTH PRODUCT CHANNEL SEPARATION2
PSRR ISY
NOTES 1 Guaranteed by CMR test. 2 Guaranteed but not 100% tested. Specifications subject to change without notice.
-2-
REV. B
OP290 ELECTRICAL CHARACTERISTICS
Parameter INPUT OFFSET VOLTAGE AVERAGE INPUT OFFSET VOLTAGE DRIFT INPUT OFFSET CURRENT INPUT BIAS CURRENT LARGE-SIGNAL VOLTAGE GAIN Symbol VOS TCVOS IOS IB AVO VS = 15 V VCM = 0 V VCM = 0 V VS = 5 V, VO = 0 V RL = 100 k RL = 10 k RL = 2 k V+ = 5 V, V- = 0 V, 1 V < VO < 4 V RL = 100 k RL = 10 k V+ = 5 V, V- = 0 V VS = +15 V* VS = 15 V RL = 10 k RL = 2 k V+ = 5 V, V- = 0 V RL = 2 k V+ = 5 V, V- = 0 V RL = 10 k V+ = 5 V, V- = 0 V, 0 V < VCM < 3.5 V VS = 15 V -15 V < VCM < 13.5 V 300 150 75
(@ VS =
1.5 V to
15 V, -40 C TA +85 C for OP290G, unless otherwise noted.)
OP290G Typ 200 1.2 0.1 4.2 600 250 125 7 25
Conditions
Min
Max 750
Unit V V/C nA nA V/mV V/mV V/mV
80 40 0/3.5 -15/+13.5 13 10 3.9
160 90
V/mV V/mV V V
INPUT VOLTAGE RANGE* OUTPUT VOLTAGE SWING
IVR VO VOH VOL
14 11 4.1 10 100
V V V V dB
COMMON-MODE REJECTION
CMR
80
100
90
110 5.6 15 50 60
dB V/V A A
POWER SUPPLY REJECTION RATIO SUPPLY CURRENT (All Amplifiers)
*Guaranteed by CMR test. Specifications subject to change without notice.
PSRR ISY VS = 1.5 V VS = 15 V
24 31
REV. B
-3-
OP290
ABSOLUTE MAXIMUM RATINGS 1 ORDERING GUIDE
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V Differential Input Voltage . . . . [(V-) - 20 V] to [(V+) + 20 V] Common-Mode Input Voltage . [(V-) - 20 V] to [(V+) + 20 V] Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite Storage Temperature Range P Package . . . . . . . . . . . . . . . . . . . . . . . . -65C to +150C Operating Temperature Range OP290G . . . . . . . . . . . . . . . . . . . . . . . . . . . -40C to +85C Junction Temperature (TJ) . . . . . . . . . . . . . -65C to +150C Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300C Package Type 8-Lead Plastic DIP (P)
JA 2 JC
Model OP290GP
Temperature Range XIND
TA = 25 C VOS Max (mV) 500
Package Description
PDIP
Unit C/W
96
37
NOTES 1 Absolute Maximum Ratings applies to packaged part. 2 JA is specified for worst-case mounting conditions, i.e., device in socket for PDIP package.
JA
is specified for
CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP290 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
-4-
REV. B
Typical Performance Characteristics-OP290
100 INPUT OFFSET VOLTAGE - V VS = 15V
INPUT OFFSET CURRENT - nA
0.14
VS = 15V
INPUT BIAS CURRENT - nA
4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 VS = 15V
80
0.12
60
0.10
40
0.08
20
0.06
0 0 25 50 75 -75 -50 -25 TEMPERATURE - C 100 125
0 25 50 75 -75 -50 -25 TEMPERATURE - C
100 125
3.5 -75 -50 -25 0 25 50 75 TEMPERATURE - C
100 125
TPC 1. Input Offset Voltage vs. Temperature
TPC 2. Input Offset Current vs. Temperature
TPC 3. Input Bias Current vs. Temperature
44 NO LOAD 40
OPEN-LOOP GAIN - V/mV
600 RL = 10k 500 TA = 25 C
OPEN-LOOP GAIN - dB
140 120 100 GAIN 80 PHASE 60 40 20 0 TA = 25 C VS = 15V RL = 100k
140 120 100 80 60 40 20 0 30
PHASE SHIFT - Degrees
SUPPLY CURRENT - A
36 32 28 24 20 16 12 8 4 0 25 50 75 -75 -50 -25 TEMPERATURE - C VS = 1.5V VS = 15V
400
TA = 85 C
300
TA = 125 C
200
100
0 100 125
0
5
10 15 20 TEMPERATURE - C
25
30
0
5
10 15 20 FREQUENCY - Hz
25
TPC 4. Supply Current vs. Temperature
TPC 5. Open-Loop Gain vs. Single-Supply Voltage
TPC 6. Open-Loop Gain and Phase Shift vs. Frequency
60
OUTPUT VOLTAGE SWING - V
6
TA = 25 C VS = 15V
CLOSED-LOOP GAIN - dB
TA = 25 C V+ = 5V, V- = 0V
OUTPUT VOLTAGE SWING - V
16 14 12 10 8 6 4 2 TA = 25 C VS = 15V 1k 10k LOAD RESISTANCE - 100k
5
40
4
20
3
2
0
1
-20 10
100
1k 10k FREQUENCY - Hz
100k
0 100
1k 10k LOAD RESISTANCE -
100k
0 100
TPC 7. Closed-Loop Gain vs. Frequency
TPC 8. Ouput Voltage Swing vs. Load Resistance
TPC 9. Output Voltage Swing vs. Load Resistance
REV. B
-5-
OP290
140
POWER SUPPLY REJECTION - dB
TA = 25 C NEGATIVE SUPPLY
COMMON-MODE REJECTION - dB
140
120
120
100 POSITIVE SUPPLY 80
100
80
60
60
40 1 10 100 FREQUENCY - Hz 1k
40 1 10 100 FREQUENCY - Hz 1k
NOISE VOLTAGE DESTINY- nV/ Hz
TA = 25 C VS = 15V
1,000
TA = 25 C VS = 15V
100
10 0.1
1
10 100 FREQUENCY - Hz
1k
TPC 10. Power Supply Rejection vs. Frequency
TPC 11. Common-Mode Rejection vs. Frequency
TPC 12. Noise Voltage Density vs. Frequency
10
CURRENT NOISE DESTINY- nV/ Hz
TA = 25 C VS = 15V
100 90 100 90
TA = 25 C VS = 15V AV = +1 RL = 10k CL = 500pF
1
TA = 25 C VS = 15V AV = +1 RL = 10k CL = 500pF
10 0% 10 0%
20mV
100 s
5V
1ms
0.1 0.1
1
10 100 FREQUENCY - Hz
1k
TPC 13. Current Noise Density vs. Frequency
TPC 14. Small-Signal Transient Response
TPC 15. Large-Signal Transient Response
-6-
REV. B
OP290
+18V
+15V +15V
100k 1/2
8
1/2
2 200 3
OP290
1
1k A 9k
OP290
OP37A
V2
6 100k 5
1/2
OP290
7
-15V
100
10k
-15V
4
VIN
1/2
OP290
B
V1 20Vp-p @ 10Hz
-18V
V1 CHANNEL SEPARATION = 20 LOG V2/1000
Figure 2. Burn-In Circuit
APPLICATIONS INFORMATION BATTERY-POWERED APPLICATIONS
Figure 3. Channel Separation Test Circuit
APPLICATIONS TEMPERATURE TO 4-20 mA TRANSMITTER
The OP290 can be operated on a minimum supply voltage of 1.6 V, or with dual supplies of 0.8 V, and draws only 19 pA of supply current. In many battery-powered circuits, the OP290 can be continuously operated for thousands of hours before requiring battery replacement, reducing equipment downtime and operating cost. High-performance portable equipment and instruments frequently use lithium cells because of their long shelf-life, light weight, and high energy density relative to older primary cells. Most lithium cells have a nominal output voltage of 3 V and are noted for a flat discharge characteristic. The low supply voltage requirement of the OP290, combined with the flat discharge characteristic of the lithium cell, indicates that the OP290 can be operated over the entire useful life of the cell. Figure 1 shows the typical discharge characteristic of a 1 Ah lithium cell powering an OP290 with each amplifier, in turn, driving full output swing into a 100 k load.
INPUT VOLTAGE PROTECTION
A simple temperature to 4-20 mA transmitter is shown in Figure 5. After calibration, the transmitter is accurate to +0.5C over the -50C to +150C temperature range. The transmitter operates from 8 V to 40 V with supply rejection better than 3 ppm/V. One half of the OP290 is used to buffer the VTEMP pins while the other half regulates the output current to satisfy the current summation at its noninverting input.
IOUT =
VTEMP ( R6 + R7) R2 R6 R7 - VSET R2 R10 R2 R10
100
LITHIUM SULPHUR DIOXIDE CELL VOLTAGE - V
80
60
The OP290 uses a PNP input stage with protection resistors in series with the inverting and noninverting inputs. The high breakdown of the PNP transistors coupled with the protection resistors provide a large amount of input protection, allowing the inputs to be taken 20 V beyond either supply without damaging the amplifier.
SINGLE-SUPPLY OUTPUT VOLTAGE RANGE
40
20
0
0
500
1000
In single-supply operation the OP290's input and output ranges include ground. This allows true "zero-in, zero-out" operation. The output stage provides an active pull-down to around 0.8 V above ground. Below this level, a load resistance of up to 1 M to ground is required to pull the output down to zero. In the region from ground to 0.8 V, the OP290 has voltage gain equal to the data sheet specification. Output current source capability is maintained over the entire voltage range including ground.
1500 2000 HOURS
2500
3000
3500
Figure 4. Lithium Sulphur Dioxide Cell Discharge Characteristic with OP290 and 100 k Loads
The change in output current with temperature is the derivative of the transfer function:
IOUT = T
VTEMP (R6 + R7) T R2 R10
REV. B
-7-
OP290
From the formulas, it can be seen that if the span trim is adjusted before the zero trim, the two trims are not interactive, which greatly simplifies the calibration procedure. Calibration of the transmitter is simple. First, the slope of the output current versus temperature is calibrated by adjusting the span trim, R7. A couple of iterations may be required to be sure the slope is correct. Once the span trim has been completed, the zero trim can be made. Remember that adjusting the offset trim will not affect the gain. The offset trim can be set at any known temperature by adjusting R5 until the output current equals:
VARIABLE SLEW RATE FILTER
I FS IOUT = - TMIN ) + 4 mA (T TOPERATING AMBIENT
Table I shows the values of R6 required for various temperature ranges.
Table I.
The circuit shown in Figure 6 can be used to remove pulse noise from an input signal without limiting the response rate to a genuine signal. The nonlinear filter has use in applications where the input signal of interest is known to have physical limitations. An example of this is a transducer output where a change of temperature or pressure cannot exceed a certain rate due to physical limitations of the environment. The filter consists of a comparator which drives an integrator. The comparator compares the input voltage to the output voltage and forces the integrator output to equal the input voltage. A1 acts as a comparator with its output high or low. Diodes D1 and D2 clamp the voltage across R3 forcing a constant current to flow in or out of C2. R3, C2, and A2 form an integrator with A2's output slewing at a maximum rate of:
0.6 V VD R3 C 2 R3 C 2 For an input voltage slewing at a rate under this maximum slew rate, the output simply follows the input with A1 operating in its linear region. Maximum slew rate =
Temperature Range 0C to +70C -40C to +85C -55C to +150C
R6 (k ) 10 6.2 3
1N4002 V+ 8V TO 40V SPAN TRIM 2 R4 20k 1/2 8 1 VTEMP R2 1k R3 100k R5 5k VSET 5 ZERO TRIM 6 1/2 R6 3k R7 5k R8 1k R9 100k 2N1711
VIN
2
REF-43BZ
VOUT 6 3 R1 4 10k
OP290GP
4
VTEMP GND
OP290GP
7
R10 100 1%, 1/2W
IOUT RLOAD
Figure 5. Temperature to 4-20 mA Transmitter
-8-
REV. B
OP290
+15V R1 250k C1 0.1 F 3 2 1/2 8
OP290GP
1 R2 100k
The 200 variable resistor is used to trim the output voltage. For the lowest temperature drift, parallel resistors can be used in place of the variable resistor and taken out of the circuit as required to adjust the output voltage.
V+
2
R3 1M R4 D1 D2 25k 6 1/2 5 4700pF 7 C1
VIN
REF-43FZ
VOUT GND 4 3 4 R2 VOUT 6 2 1/2 8 1
OP290GP
2N2907A
OP290GP
4
VOUT
-15V DIODES ARE 1N4148
R1B 200 20-TURN BOURNS 3006P-1-201
R1A 2.37 1%
2k 1% C1 10 F C2 0.1 F
Figure 6. Variable Slew Rate Filter
LOW OVERHEAD VOLTAGE REFERENCE
Figure 7 shows a voltage reference that requires only 0.1 V of overhead voltage. As shown, the reference provides a stable 4.5 V output with a 4.6 V to 36 V supply. Output voltage drift is only 12 ppm/C. Line regulation of the reference is under 5 V/V with load regulation better than 10 V/mA with up to 50 mA of output current. The REF-43 provides a stable 2.5 V which is multiplied by the OP290. The PNP output transistor enables the output voltage to approach the supply voltage. Resistors R1 and R2 determine the output voltage.
Figure 7. Low Overhead Voltage Reference
R2 VOUT = 2.5 V 1 + R1
REV. B
-9-
OP290
OUTLINE DIMENSIONS 8-Lead Plastic Dual In-Line Package [PDIP] [P-Suffix] (N-8)
Dimensions shown in inches and (millimeters)
0.375 (9.53) 0.365 (9.27) 0.355 (9.02)
8 5
1
4
0.295 (7.49) 0.285 (7.24) 0.275 (6.98) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.015 (0.38) MIN SEATING PLANE 0.060 (1.52) 0.050 (1.27) 0.045 (1.14)
0.100 (2.54) BSC 0.180 (4.57) MAX 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.022 (0.56) 0.018 (0.46) 0.014 (0.36)
0.150 (3.81) 0.135 (3.43) 0.120 (3.05)
0.015 (0.38) 0.010 (0.25) 0.008 (0.20)
COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
-10-
REV. B
OP290 Revision History
Location 12/03--Data Sheet changed from REV. A to REV. B. Page
Deleted OP290E and OP290F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal Replaced PIN CONNECTIONS with PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Deleted ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Changes to TPC 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Change to SINGLE SUPPLY OUTPUT VOLTAGE RANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Changes to Figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Changes to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Change to LOW OVERHEAD VOLTAGE REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1/02--Data Sheet changed from REV. 0 to REV. A.
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Edits to DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
REV. B
-11-
-12-
C00327-0-12/03(B)


▲Up To Search▲   

 
Price & Availability of OP29003

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X